Paramagnetic Defects in α -W_xV₂O₅

JACQUES LIVAGE, CHAKIB R'KHA, AND DOMINIQUE BALLUTAUD

Spectrochimie du Solide, ERA 387, Université Paris VI, 4, place Jussieu, Paris 5e, France

AND JEAN-CLAUDE GRENET

Chimie Appliquée, Bâtiment 414, Université Paris XI, 91405 Orsay, France

Received February 21, 1979; in revised form October 10, 1979

Paramagnetic defects in $\alpha \cdot W_x V_2 O_5$ have been studied by ESR. A model is proposed where the unpaired electron arising from a valence induction effect remains localized on a single vanadium ion near the W⁶⁺ along the *b* direction. Introducing W⁶⁺ leads to a lattice distortion which is more important than that in the case of Mo⁶⁺. A slight displacement of vanadium along the *a* direction is observed in the defect, V⁴⁺ showing a stronger tendency toward octahedral coordination than V⁵⁺.

Introduction

Nonstoichiometric vanadium pentoxide V_2O_5 is a low-mobility *n*-type semiconductor. Its properties arise from the hopping of an unpaired electron between V^{4+} and V^{5+} ions (1-3). At low temperature, the charge carriers are trapped on defects and the unpaired electron is delocalized over two vanadium ions separated by an oxygen vacancy (4). The nature of these defects may be modified by doping the oxide. In α - $M_xV_2O_5$ bronzes ($M = \text{Li}^+$, Na⁺), for instance the electron is delocalized over the four equivalent vanadium ions surrounding the interstitial monovalent impurity (5, 6).

MoO₃ and WO₃ give extended solid solutions with V₂O₅ (7, 8). These solid solutions have the same orthorhombic structure as V₂O₅, the hexavalent ion M^{6+} occupying vanadium lattice sites. Such systems have been extensively studied (9–12). NMR experiments (13) show that introducing M^{6+} ions results in a distortion of the V₂O₅ lattice. This distortion is more important with tungsten and the solid solution obtained in that case is limited to 7 mole% WO₃ while for MoO₃ it goes up to 15% at room temperature. ESR experiments performed on Mo⁶⁺-doped V₂O₅ single crystals (14) show that the charge difference is compensated on a local range, the unpaired electron being localized on a V⁴⁺ ion near the Mo⁶⁺. These results were then extended to W_xV₂O₅ (5) but no detailed ESR study has been yet published.

In this paper, we present an ESR study of $W_x V_2 O_5$ single crystals, up to the solid solution limit, in order to get more information about the nature of the paramagnetic defects. Such defects take an important part in the semiconducting properties of the oxide as well as in its catalytic activity toward oxidation reactions.

Experimental

Solid solutions of
$$WO_3 - V_2O_5$$
 were made

	IADLC	L	
Unit-Cell Para V ₂ O ₅ –V	Meters of VO_3 Solid 3	an Orthorh Solution	IOMBIC
	а	Ь	с

TADID

Mole% of WO ₃	a (Å)	<i>b</i> (Å)	с (Å)
0	11.510	4.370	3.563
3	11.518	4.350	3.564
7	11.524	4.340	3.565

by melting together the two oxides in the appropriate ratio. Single crystals were grown by zone melting in an image furnace. Crystals of $5 \times 2 \times 0.5$ mm³ were obtained and easily cleaved along the *ac* plane. X-Ray diffraction of powders was performed on a Philips diffractometer, using Cu Ka radiation. ESR experiments were made on an X-band spectrometer (JEOL ME3X); all spectra presented in this paper were recorded at low temperature (-130°C) by blowing cold nitrogen gas through the cavity. Accurate measurements of the magnetic field were made with an NMR proton probe. orthorhombic solid solutions with V_2O_5 up to 7 mole% of WO₃. Table I gives the measured lattice parameters. It shows that a and c slightly increase with tungsten content while b decreases.

A typical low-temperature ESR spectrum of $W_x V_2 O_5$ single crystal (x = 0.005) is shown in Fig. 1. It exhibits the eight hyperfine lines due to an unpaired electron localized on a V⁴⁺ ion (I = 7/2, S = 1/2). The hyperfine structure remains resolved in all directions, the best spectrum being obtained along the *b* direction. The spectrum is almost isotropic in the *ac* plane and anisotropic outside this plane, indicating a V⁴⁺ ion in a crystal field strongly distorted along the *b* axis. This corresponds to the site symmetry around vanadium in the V₂O₅ lattice (Fig. 2).

Table II gives the ESR parameters measured for pure V_2O_5 and $W_xV_2O_5$ (x = 0.005) single crystals, along with those obtained by Boesman and Gillis (14) for $Mo_xV_2O_5$ (x = 0.005).

As for $Mo_x V_2 O_5$ (14) the eight-line pattern is conserved when the sample is ro-

Results

X-Ray experiments show that WO₃ gives

FIG. 1. ESR spectrum of $W_x V_2 O_s$ single crystal (x = 0.005). The magnetic field is parallel to the **b** axis. Recording temperature: -130° C.

FIG. 2. Site symmetry and V–O distances in V_2O_5 according to Ref. (15).

tated about the a and b axes. The angular variation is much more complicated when the magnetic field is rotating about the caxis, in the *ab* plane. For \hat{Ha} or $\hat{Hb} \neq 0$, the low- and high-field lines are split and a complicated spectrum is observed (Fig. 3). This splitting is more visible on the highfield side of the spectrum. It may correspond to the superposition of two eight-line spectra incompletely resolved because of the large linewidth ($\Delta H \approx 80$ G). The ESR spectra of V₂O₅-WO₃ solid solutions, up to 7 mole% of WO₃, remain almost unchanged. The linewidth increases, but this is probably due to the valence induction effect (9). The V^{4+} ratio increases with x and the mean distance between paramagnetic defects decreases, leading to a dipolar broadening of the ESR spectrum. Table III gives the evolution of the ESR parameters up to 7 mole% of WO₃. The g_b value slightly decreases ($g_b = 1.8831$ for x = 0.05) when WO_3 is added.

Discussion

(a) Nature of the Defect and Lattice Distortion

The anisotropic eight-line ESR spectrum observed in Fig. 1 is typical of a V⁴⁺ ion in an axially distorted crystal field. This means that the unpaired electron in $W_x V_2 O_5$ is localized on a single vanadium

TABLE II ESR Parameters for Pure and Doped V₂O₅ Single Crystals^a

				Aa	A	A _c
	8a	80	8 c	(G)	(G)	(G)
V ₂ O ₅	1.9803	1.9131	1.9803	33	88	33
Mo _x V ₂ O ₅	1.981	1.905	1.977	52.8	158.5	50.8
$W_rV_2O_5$	1.9807	1.8866	1.9801	54.4	161	51.4

^a V_2O_5 and $W_xV_2O_5$ measurements were made in our laboratory while for $Mo_xV_2O_5$ they are taken from Boesman and Gillis (14).

FIG. 3. Low-temperature ESR spectrum of a $W_xV_2O_5$ crystal (x = 0.005) when H is perpendicular to c, and $\hat{Hb} = 60^\circ$.

instead of two as in pure V_2O_5 . Such a modification of the defect is observable even for very low concentrations of tungsten, down to 0.1 mole% of WO₃. It has been postulated (14) that the unpaired electron, attracted by the positive charge of W⁶⁺, is trapped on a vanadium site near the tungsten, leading to defects like W⁶⁺-O-V⁴⁺.

According to the structure of orthorhombic $V_2O_5(15)$, a W⁶⁺ occupying a vanadium site may have four different vanadium neighbors. Three of them are directed along the *a*, *b*, or *c* directions (Fig. 2). The fourth corresponds to the shortest V–V distance

TABLE III ESR Parameters of $W_x V_2 O_5$ Single Crystals

Mole% of WO3	B 11	8⊥	A _∥ (G)	<i>A</i> ⊥ (G)
0	1.9131	1.9803	88	33
0.5	1.8866	1.9804	161	53
1	1.885	1.979	162.5	54
5	1.882	1.984	167	Not resolved

^a The parallel direction is taken along the b axis: $g_{\parallel} = g_b$ and $g_{\perp} = \frac{1}{2}(g_a + g_c)$. (3.09 Å). If we compare the ESR spectra obtained with pure and doped V₂O₅, apart from the number of hyperfine lines, the main variation concerns the g_b value which decreases noticeably from pure V₂O₅ to $Mo_xV_2O_5$ and $W_xV_2O_5$. This leads us to think that the W⁶⁺-O-V⁴⁺ defect is directed along the b axis. This model corresponds with one of those proposed by Boesman and Gillis (14) for Mo-doped V₂O₅, but here, the g_b shift is much more important than in their case. It agrees also with the tendency of W⁶⁺ ions toward octahedral coordination which can be achieved here by displacing the oxygen ion lying between W⁶⁺ and V⁴⁺.

According to ESR results, these V⁴⁺ ions are in an orthorhombic crystal field but g_a and g_c are so close that we can approximate the site symmetry to C_{4v} , the C_4 axis lying along b. We then have $g_{\parallel} = g_b$ and $g_{\perp} =$ $g_a = g_c$. Table II shows that the difference $(g_{\perp} - g_{\parallel})$ increases from pure V₂O₅ (0.067) to Mo_xV₂O₅ (0.076) and W_xV₂O₅ (0.094). This could be related to the lattice deformation which has been observed by NMR (13), the distortion being more important with W⁶⁺ than with Mo⁶⁺. Anyway, it is noticeable that only g_{\parallel} is modified while g_{\perp} remains almost constant.

The crystal field around the V⁴⁺ ion has C_{4v} symmetry. The unpaired electron lies in a $3d_{xy}$ orbital and we can write (16) (Fig. 4)

$$g_{\parallel} = g_e - \frac{8\lambda}{\Delta E(b_1 - b_2)},$$
$$g_{\perp} = g_e - \frac{2\lambda}{\Delta E(e - b_2)}.$$

The decrease of g_{\parallel} when adding M^{6+} indicates a decrease of the energy gap between the $d_{x^2-y^2}$ and d_{xy} levels. These orbitals are involved in the V-O bonds in the *ac* plane. A modification of these bonds is then observed. This agrees with the X-ray data (Table I) showing a variation of the *a* and *c* parameters. The g_{\perp} value on the other hand

FIG. 4. Crystal field splitting of 3d orbitals in C_{4r} site symmetry. According to LCAO MO theory, b_2 , e, b_1 , and a_1 correspond to the antibonding molecular orbitals which are mainly of metallic character (16).

does not vary. It involves mainly the d_{xz} and d_{yz} orbitals which give the π bonding in the short V=O double bond along the *b* axis. This bond does not seem to be altered much when adding Mo or W.

We may then suggest the following model for the paramagnetic defects in $W_x V_2 O_5$. At low temperature, the unpaired electron is trapped on a single vanadium, near the W^{6+} in the *b* direction. The V⁴⁺ ion thus formed would have its short V==O₁₍₁₎ bond opposite to W⁶⁺ while the weak V–O₁₍₂₎ bond would be directed toward the tungsten, so that the oxygen lying between V⁴⁺ and W⁶⁺ could be easily shifted along the *b* axis (Fig. 5).

(b) Vanadium Shift in the Defect

The angular variation of the ESR spectrum when the magnetic field is rotated in the ab plane about the c axis, indicates that we are dealing with a set of two magnetically nonequivalent defects. These defects appear equivalent in some orientations, especially along the a, b, and c axes, but different for any orientation perpendicular to c, except a and b.

This behavior could be explained by a slight shift of the V^{4+} ion along the *a* direction. In all the compounds where a V=O double bond is observed, the main axis of the *g* tensor usually corresponds to the V=O direction. We may then think that

FIG. 5. Proposed model of a paramagnetic defect in α -W_xV₂O₅.

in our case the V=O bond is not directed along the *b* axis but makes an angle α with it. Such a shift may correspond to the tendency of V⁴⁺ toward octahedral coordination. It has been observed, in vanadium bronzes where both V⁴⁺ and V⁵⁺ ions are present, that V⁴⁺ occupies the octahedral sites, while V⁵⁺ enters in the distorted sites (17). If such a process arose here, V⁴⁺ ions would tend to come nearer to the O₃ oxygen in the *ac* plane (Fig. 2).

According to the V_2O_5 structure, half of the V⁴⁺ ions would be shifted in one direction along **a** and half of them in the opposite direction. We should then have two sets of paramagnetic defects characterized by the same g and A values but with their main magnetic axis (V-O₁₍₁₎) making an angle \pm α with **b** in the *ab* plane. Such defects would be equivalent for any direction of the magnetic field in the *bc* and *ac* planes. They would not be equivalent in the *ab* plane

TABLE IV ESTIMATED V⁴⁺ DISTANCES IN THE *ac* Plane

	V^{5+}	V ⁴⁺	
	(Å)	(Å)	
V-O ₃	2.021	1.941	
V-O ₂₍₂₎	1.878	1.878	
V-O ₂₍₃₎	1.878	1.878	
V-O ₂₍₁₎	1.780	1.860	

between the *a* and *b* axes. A computer simulation based on this model shows that one can fit reasonably well the observed spectrum if $\alpha = 4^{\circ}$. Taking this value, we may estimate the V⁴⁺ shift in the *a* direction. A straightforward calculation gives 0.08 Å. Table IV gives a comparison of the V-O distances for V⁵⁺ and V⁴⁺, according to our model. It shows that the V⁴⁺ ion lies nearer the middle of the four oxygens in the *ac* plane than the V⁵⁺ ion.

References

- A. B. SCOTT, J. C. MCCULLOCH, AND K. M. MAR, "Conduction in Low-Mobility Materials," p. 105, Taylor and Francis, London (1971).
- 2. J. PERLSTEIN AND M. SIENKO, J. Chem. Phys. 48(1), 174 (1968).
- 3. J. HAEMERS, E. BAETENS, AND J. VENNICK, Phys. Status Solidi A 20, 381 (1973).
- 4. E. GILLIS AND E. BOESMAN, *Phys. Status Solidi* 14, 337 (1966).
- 5. G. SPERLICH, Z. Phys. 250, 335 (1972).
- 6. G. SPERLICH AND W. D. LAZE, Phys. Status Solidi B 65, 625 (1974).
- K. TARAMA, S. H. TERANIGHI, AND S. YOSHIDA, Bull. Inst. Chem. Res. Kyoto Univ. 46, 185 (1968).
- V. V. VOLKOV, G. S. TINCHACHEVA, A. A. FO-TIOEV, AND E. V. CHACHENKO, *Zh. Neorg. Khim.* 17, 2803 (1972).
- 9. E. BURZO, L. STANESCU, AND D. UNGUR, Solid State Commun. 18, 537 (1976).
- 10. L. STANESCU AND I. ANDELEAN, *Rev. Roum. Phys.* 21, 10, 1049 (1976).
- L. STANESCU, E. INDREA, I. ARDELEAN, M. COLDEA, I. BRATU, AND D. STANESCU, *Rev. Roum. Phys.* 21, 9, 939 (1976).
- E. BURZO AND L. STANESCU, Mater. Res. Bull. 13, 237 (1978).
- 13. M. COLDEA, L. STANESCU, AND I. ANDELEAN, Phys. Status Solidi A 26, K145 (1974).
- 14. E. BOESMAN AND E. GILLIS, Phys. Status Solidi 14, 349 (1966).
- 15. H. G. BACHMAN, F. R. AHMED, AND W. H. BARNES, Z. Kristallogr. 115, 110 (1961).
- C. J. BALLHAUSEN AND H. B. GRAY, J. Inorg. Chem. 1(1), 111 (1962).
- 17. P. HAGENMULLER, Progr. Solid State Chem. 5, 71 (1971).